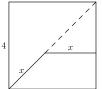
New York City Interscholastic Math League Soph-Frosh Division Contest Number 1

Part I	FALL 2011	Contest 1	Time: 10 Minutes
F11SF1	The length and width of a rectangle are consecutive integers. The diagonal of the rectangle is 5. Compute the area of the rectangle.		
F11SF2	Suppose that the number x satisfies the equation $x + x^{-1} = 3$. Compute the value of $x^8 + x^{-8}$.		
Part II	FALL 2011	Contest 1	Time: 10 Minutes
F11SF3	A standard six-sided dice is rolled, and S is the sum of the five numbers that are visible. Compute the probability that S is a prime number.		
F11SF4	In $\triangle ABC$, points D and intersect at P so that $\frac{AI}{DI}$	<i>E</i> lie on <i>BC</i> and <i>AC</i> , res $\frac{BP}{EP} = 5$ and $\frac{BP}{EP} = 7$, com	spectively. If AD and BE pute the ratio, CD/BD .
Part III	FALL 2011	Contest 1	Time: 10 Minutes
F11SF5	A parabola $y = x^2$ and a line $x = \frac{y}{4} - 3$ intersect at two points $A(a, b)$ and $B(c, d)$. Compute the sum $a + b + c + d$.		
F11SF6	The polynomial $x^3 - ax^2 + bx - 455$ has three positive prime roots. If one of the roots is 5, then compute $a + b$.		

New York City Interscholastic Math League Soph-Frosh Division Contest Number 2

Part I	FALL 2011	Contest 2	Time: 10 Minutes
F11SF7	Suppose $4x + 3y = 6x + y \neq 0$. Compute $\frac{6x-2y}{x+y}$.		
F11SF8	Two positive integers a and b satisfy the following equation:		
	(a+2b)(a-b) = 10		
	Find all possible values for $2a + 3b$.		
Part II	FALL 2011	Contest 2	TIME: 10 MINUTES
F11SF9	A three-digit number is for of the digits is not allowe number is less than 500.		
F11SF10	A square with a side length of 4 is shown in the diagram below. Take the point on the dotted diagonal that is equally distant from the bottom left corner and the right side. This distance can be expressed as $a - b\sqrt{2}$. Compute $a + b$ where a and b are both integers.		



Part III	FALL 2011	Contest 2	Time: 10 Minutes
F11SF11	Positive integers x and y satisfy the following equation: $\sqrt{xy} = 6$. Compute the number of distinct pairs (x,y) that satisfy the above equation.		
F11SF12	Trapezoid $ABCD$ has AL Given that the ratio BC :		

New York City Interscholastic Math League Soph-Frosh Division Contest Number 3

Part I	FALL 2011	Contest 3	Time: 10 Minutes
F11SF13	A function is defined as		
	$f(\sqrt{5t-1}) = \frac{t+3}{3t-4}$ where $t > 0.2$ and $t \neq \frac{4}{3}$		
	Compute the value of $f(3)$.		
F11SF14	If $x^2 + y^2 = 13$ and $x^2 - y$	$y^2 = 3$, compute $ xy $.	
Part II	FALL 2011	Contest 3	Time: 10 Minutes
F11SF15	From a group of boys and girls, 6 girls leave. Then there are two boys for each girl. After 10 boys leave the remaining group, there are 3 girls for each boy. Compute the number of boys in the beginning.		
F11SF16	In the figure, $\angle EAB$ and $BC = 8$, and $AE = 11$, co and $\triangle BDC$		

Part III	FALL 2011	Contest 3	TIME: 10 MINUTES
F11SF17	Compute the number of positive integers x less than or equal to 16 that satisfy the following condition:		
	x! is c	livisible by $1 + 2 + 3 + \cdot$	$\cdots + x$
F11SF18	**	rged list, the mean of the	n is increased by 4. When e enlarged list is decreased ginal list.

NEW YORK CITY INTERSCHOLASTIC MATH LEAGUE SOPH-FROSH DIVISION CONTEST NUMBER 1 SOLUTIONS

F11SF1. 12 One of the famous Pythagorean triples is (3,4,5). In other words, $3^2 + 4^2 = 5^2$. Hence, we know that the length and width of the rectangle are 3 and 4. The area of the rectangle is $3 \times 4 = 12$. This can be also solved by solving a quadratic equation. Let l and w be the length and width of the rectangle, respectively. Without loss of generality, assume that l < w. Since l and w are consecutive integers, we have l + 1 = w. Using the Pythagorean Theorem, we have:

$$l^{2} + w^{2} = l^{2} + (l+1)^{2} = 2l^{2} + 2l + 1 = 25$$
$$l^{2} + l - 12 = 0 \Longrightarrow (l-3)(l+4) = 0$$

Since l is a positive integer, we have l = 3 and w = l + 1 = 4. The area of the rectangle is $l \times w = 12$.

F11SF2. **2207** We are given that

$$x + \frac{1}{x} = 3$$

Squaring both sides of the above equation results in

$$x^{2} + \frac{1}{x^{2}} + 2 = 9 \Longrightarrow x^{2} + \frac{1}{x^{2}} = 7$$

We can repeat the process to get:

$$x^{4} + \frac{1}{x^{4}} = 47$$
$$x^{8} + \frac{1}{x^{8}} = 2207$$

F11SF3. $\boxed{1/3}$ The sum of all six numbers on a dice is:

$$1 + 2 + \dots + 6 = \frac{7 \cdot 6}{2} = 21$$

If one is not visible, then S = 21 - 1 = 20. Hence, there are six possible values for S: 20, 19, 18, 17, 16, and 15. Among these six numbers, only 17 and 19 are prime numbers. Therefore, the probability that S is a prime number is $\frac{2}{6} = \frac{1}{3}$.

F11SF4. 3/17 Let the area of *BPD*, denoted as *[BPD]*, be *x*. Then from the ratio AP/DP = 5, we know that [BPA] = 5x. Using the ratio BP/EP = 7, then the area of *APE* is

$$\frac{5x}{[APE]} = 7 \Longrightarrow [APE] = \frac{5x}{7}$$

Now let [PDC] = y. From the ratio BP/EP = 7, we have [PEC] = (x + y)/7.

$$\frac{[PDC]}{[APC]} = \frac{1}{5} \Longrightarrow \frac{y}{\frac{5}{7}x + \frac{x+y}{7}} = \frac{1}{5}$$
$$\frac{y}{\frac{6x+y}{7}} = \frac{7y}{6x+y} = \frac{1}{5} \Longrightarrow 35y = 6x + y \Longrightarrow y = \frac{3}{17}x$$
$$\frac{CD}{BD} = \frac{[PDC]}{[BPD]} = \frac{y}{x} = \frac{3}{17}$$

F11SF5. $\boxed{44}$ Solving for y in the line equation gives us:

$$y = 4x + 12$$

Since the parabola and the line intersect, we can set the two equations equal to each other:

$$x^{2} = 4x + 12 \Longrightarrow x^{2} - 4x - 12 = 0 \Longrightarrow (x - 6)(x + 2) = 0$$

Solving this quadratic equation results in x = 6 and x = -2. If x = 6, then $y = x^2 = 36$. If x = -2, then $y = x^2 = 4$. Therefore, the two points are A(6, 36) and B(-2, 4). The answer is 6 + 36 - 2 + 4 = 44.

F11SF6. 216 Let x_1, x_2 , and x_3 be the roots of the polynomial. Using Vieta's Formula, we have that

$$x_1 + x_2 + x_3 = -\frac{(-a)}{1} = a \tag{1}$$

$$x_1 x_2 + x_1 x_3 + x_2 x_3 = b \tag{2}$$

$$x_1 x_2 x_3 = -\frac{(-455)}{1} = 455$$

Since one of the zeros is 5, without loss of generality, let $x_1 = 5$:

$$x_2x_3 = 91$$

91 has only two prime factors, namely 7 and 13. We are given that all three zeros are prime numbers, and WLOG set $x_2 = 7$ and $x_3 = 13$. From eq. (1) and (2), we can compute a and b:

$$a = x_1 + x_2 + x_3 = 5 + 7 + 13 = 25$$

$$b = x_1 x_2 + x_1 x_3 + x_2 x_3 = 35 + 65 + 91 = 191$$

Therefore, a + b = 216.

NEW YORK CITY INTERSCHOLASTIC MATH LEAGUE SOPH-FROSH DIVISION CONTEST NUMBER 2 SOLUTIONS

F11SF7. 2 Rearranging the given equation gives us:

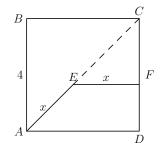
$$2x = 2y \Longrightarrow x = y$$

Then, $\frac{6x - 2y}{x + y} = \frac{6x - 2x}{x + x} = 2$

F11SF8. **9, 17** Since a and b are positive integers, it is clear that a + 2b and a - b are integers and a + 2b > a - b. Thus we can either have a + 2b = 5 and a - b = 2 or a + 2b = 10 and a - b = 1. Solving the first set of equations, we get a = 3 and b = 1. Therefore, 2a + 3b = 2(3) + 3(1) = 9. Solving the second set of equations, we get a = 4 and b = 3. Therefore, 2a + 3b = 2(4) + 3(3) = 17.

F11SF9. $\boxed{1/2}$ Since the three-digit number has to be less than 500, only 1, 2, and 3 are allowed for the hundred's place. There is no restriction for the ten's and one's places. Therefore, the probability that the three-digit number is less than 500 is $\frac{3}{6} = \frac{1}{2}$.

F11SF10. **12** First we can label the figure. $\triangle CEF$ and $\triangle CAD$ are similar:



$$\frac{EF}{AD} = \frac{x}{4} = \frac{CF}{4} \Longrightarrow CF = x$$

Using the Pythagorean Theorem, we can solve for CE:

$$CE = \sqrt{2x^2} = x\sqrt{2}$$
$$CA = 4\sqrt{2} = AE + CE = x + x\sqrt{2}$$
$$4\sqrt{2} = x(1 + \sqrt{2}) \Longrightarrow x = \frac{4\sqrt{2}}{1 + \sqrt{2}} = 8 - 4\sqrt{2}$$

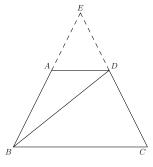
Then a = 8 and b = 4. a + b = 12.

F11SF11. 9 First, square both sides of the given equation to get:

$$xy = 36$$

Then we can list out all the possible pairs: (1,36), (2,18), (3,12), (4,9), (6,6), (9,4), (12,3), (18,2), (36,1). There are 9 pairs.

F11SF12. **4/3** Extend AB and CD to meet at E as shown in the diagram below (figure not drawn to scale): We have $\angle DBA = 33^{\circ}$ and $\angle BDE = 180 - 66 = 114^{\circ}$. Then



 $\angle BED = 33^{\circ}$, and $\triangle BDE$ is an isosceles triangle. Hence DE = BD = 1. Since AD||BC, $\triangle ADE$ and $\triangle BCE$ are similar.

$$\frac{AD}{BC} = \frac{3}{7} = \frac{DE}{DE + CD} = \frac{1}{1 + CD} \Longrightarrow CD = \frac{4}{3}$$

NEW YORK CITY INTERSCHOLASTIC MATH LEAGUE SOPH-FROSH DIVISION CONTEST NUMBER 3 SOLUTIONS

F11SF13. **5/2** First, we need to solve for t in $\sqrt{5t-1} = 3$.

$$\sqrt{5t-1} = 3 \Longrightarrow 5t-1 = 9 \Longrightarrow t = 2$$
$$f(3) = \frac{2+3}{6-4} = \frac{5}{2}$$

F11SF14. $2\sqrt{10}$ Adding the two given equations gives us:

$$2x^{2} = 16 \Longrightarrow x^{2} = 8$$
$$y^{2} = 13 - x^{2} = 5$$
$$xy| = \sqrt{x^{2}y^{2}} = \sqrt{40} = 2\sqrt{10}$$

F11SF15. **12** Let *B* and *G* be the number of boys and girls in the beginning, respectively. After 6 girls leave, we have the following equation:

$$B = 2(G - 6) = 2G - 12$$

After 10 boys leave the group, we have

$$3(B-10) = G-6$$

Substituting B = 2G - 12 into 3(B - 10) = G - 6 and solving for G, we get

$$3(2G-22) = G-6 \Longrightarrow 6G-66 = G-6 \Longrightarrow G = 12$$

Then B = 2G - 12 = 12.

F11SF16. 9 Let the area of $\triangle ABD$, denoted as [ABD], be x. Then we have

$$[ADE] + x = 33$$
$$[BDC] + x = 24$$

Subtracting the two equations gives us the difference between [ADE] and [BDC]:

$$[ADE] - [BDC] = 33 - 24 = 9$$

F11SF17. **10** Using the arithmetic sum equation, we can express $1 + 2 + 3 + \cdots x$ as

$$1 + 2 + 3 + \dots x = \frac{(1+x)x}{2}$$

To satisfy the condition, we need to have

$$\frac{x!}{\frac{(1+x)x}{2}} = k$$

where k is an integer. We can simplify the equation:

$$\frac{2x!}{(1+x)x} = \frac{2(x-1)!}{x+1} = k$$

k is an integer if and only if x + 1 is not an odd, prime number. There are 6 odd prime numbers less than or equal to x + 1 = 16 + 1 = 17: 3, 5, 7, 11, 13 and 17. Therefore, there are 16 - 6 = 10 positive integers less than or equal to 16 that satisfy the condition.

F11SF18. **40** Let S and n denote the sum and number of the elements in the original list, respectively. When 30 is appended to the list, the mean is increased by 4:

$$\frac{S+30}{n+1} = \frac{S}{n} + 4 = \frac{S+4n}{n}$$

Simplifying the above equation gives us:

$$Sn + 30n = Sn + S + 4n^2 + 4n \Longrightarrow 4n^2 + S = 26n$$

When 2 is appended to the enlarged list, the mean is decreased by 2:

$$\frac{S+32}{n+2} = \frac{S}{n} + 2 = \frac{S+2n}{n}$$

Again, simplifying the equation results in:

$$Sn + 32n = Sn + 2S + 2n^2 + 4n \Longrightarrow n^2 + S = 14n$$

Finally subtracting $n^2 + S = 14n$ from $4n^2 + S = 26n$, we get:

$$3n^2 = 12n \Longrightarrow n(n-4) = 0$$

Since n cannot be a zero, n = 4. To find S, we simply substitute n = 4 into either $n^2 + S = 14n$ or $4n^2 + S = 26n$ to get S = 40.