
New York City Interscholastic Math League

Senior Division A Contest Number 1

Part I Spring 2011 Contest 1 Time: 10 Minutes

S11A1 Compute the number of upwards-pointing
equilateral triangles whose edges belong to
the segments shown.

S11A2 The real number r is larger than 1, 000, 000, 000. Compute, in terms of

r, the median of the set

{
(log2 r)

3, log2(r
3), r, log2(log2(r)),

r

log2 r

}
.

Part II Spring 2011 Contest 1 Time: 10 Minutes

S11A3 Compute
∞∑

n=1

2n − 1

3n−1
.

S11A4 Given any point P , point R1(P ) is defined to be the reflection of
P through the line y = x · tan(15◦). Similarly, given any point
P , the point R2(P ) is defined to be the reflection of P through
the line y = x · tan(20◦). Let Q be the point (6, 0). Compute
R2(R1(R2(R1(R2(R1(Q)))))).

Part III Spring 2011 Contest 1 Time: 10 Minutes

S11A5 Compute the smallest positive integer n such that 360n has more than
1000 positive integral divisors.

S11A6 A cylinder of radius 1 has its axis parallel to the z-axis, and is cut
by the plane z = 4x. The intersection of these surfaces is an ellipse.
Compute the distance between its foci.



New York City Interscholastic Math League

Senior Division A Contest Number 2

Part I Spring 2011 Contest 2 Time: 10 Minutes

S11A7 Compute
1− cos 34◦

1 + cos 34◦
− sec2 17◦.

S11A8 Compute, as a function of the positive integer n, the number of points
with integer coordinates that lie inside or on the boundary of the tri-
angle whose sides have equations y = 0, y = x

3
and x = 3n.

Part II Spring 2011 Contest 2 Time: 10 Minutes

S11A9 Compute the largest coefficient in the expansion of (2x+ 3y)6.

S11A10 Three unit circles are pairwise tangent. There are two circles that are
tangent to all three of these circles, one with radius r and the other
with radius R, such that r < R. Compute R

r
.

Part III Spring 2011 Contest 2 Time: 10 Minutes

S11A11 Compute the number of positive integers less than 2011 that are divis-
ible by 3 or divisible by 5 but not divisible by both 3 and 5.

S11A12 Define t(n) by t(0) = 1 and for n ≥ 1, t(n) = 2t(n−1). Compute the
smallest positive integer n such that t(n) ≥ 4000(40004000).



New York City Interscholastic Math League

Senior Division A Contest Number 3

Part I Spring 2011 Contest 3 Time: 10 Minutes

S11A13 There are 5280 feet in a mile, 8 furlongs in a mile, 6 feet in a fathom
and 40 rods in a furlong. Compute the number of square fathoms in a
square rod.

S11A14 Point P lies on the circle with center (−2,−1) and radius 2, while
point Q lies on the circle with center (3,−2) and radius 3. Compute
the smallest possible distance between points P and Q.

Part II Spring 2011 Contest 3 Time: 10 Minutes

S11A15 Compute the number of ways to exactly and completely cover a 2× 6
rectangle with non-overlapping 2× 1 and 1× 2 rectangles.

S11A16 A diamond is a square, one of whose sides is parallel to the line y = x.
Compute the number of diamonds, all of whose vertices belong to the
set of points (x, y) such that x, y are integers between 1 and 8, inclusive.

Part III Spring 2011 Contest 3 Time: 10 Minutes

S11A17 Compute all ordered pairs (a, b) of positive integers such that a < b and
there exists a right triangle with legs of length a and b and hypotenuse
of length 25.

S11A18 Compute the largest coefficient in the expansion of (x + π)100. (Leave
your answer in the form of a power of π times a binomial coefficient.)



New York City Interscholastic Math League

Senior Division A Contest Number 4

Part I Spring 2011 Contest 4 Time: 10 Minutes

S11A19 Compute the number of positive integers n such that there exist positive
integers x and y satisfying lcm(x, y) = 44100 and gcd(x, y) = n.

S11A20 Three distinct points are chosen from a 2×10 rectangular grid of points
like the one shown. Compute the probability that these points are the
vertices of a nondegenerate triangle.

Part II Spring 2011 Contest 4 Time: 10 Minutes

S11A21 Compute all θ such that 0 ≤ θ ≤ 360 and cos 3θ◦ = cos 51◦.

S11A22 A bullseye is formed by seven concentric circles with radii 1, 2, 3, 4, 5,
6 and 7. A dart is thrown at the bullseye and lands at a random point
inside the largest circle. Compute the expected number of the seven
circles inside which the dart lands.

Part III Spring 2011 Contest 4 Time: 10 Minutes

S11A23 Suppose that the real part of the complex number z is equal to 1 and
the real part of z2 is equal to −2. Compute the real part of z3.

S11A24 Compute, as a function of the positive integer n, the number of points
with integer coordinates contained inside or on the boundary of the
triangle whose sides have equations y = 3x, y = x

2
and y = −x

2
+ 14n.



New York City Interscholastic Math League

Senior Division A Contest Number 5

Part I Spring 2011 Contest 5 Time: 10 Minutes

S11A25 Compute the largest possible value of 2x2
√

5 − x4 as x varies through
the real numbers.

S11A26 Compute the number of ways in which a nonnegative integer may be
written in each square of a 3× 3 grid so that the sum of the entries in
each row and each column is equal to 2.

Part II Spring 2011 Contest 5 Time: 10 Minutes

S11A27 A jar contains blue and green balls (and no others). If a single ball is
selected at random from the jar, the probability that it is blue is 1

3
. If

two balls are selected from the jar without replacement, the probability
that they are both blue is 2

21
. Compute the total number of balls in the

jar.

S11A28 Eight points lie on a line. Compute the number of ways in which four
line segments can be drawn such that each of the points is an endpoint
of exactly one of the segments and each pair of segments overlap.

Part III Spring 2011 Contest 5 Time: 10 Minutes

S11A29 In rhombus ABCD, points P and Q are chosen on AB and CD, re-
spectively, so that AP

PB
= CQ

QD
= 1

2
. If PQ ⊥ AB, compute sin ∠ABC.

S11A30 Three points, A, B and C, lie on the sphere of radius 1 centered at O.
If the shortest path from A to B along the surface of the sphere has
length π/4 and the shortest path from B to C along the surface of the
sphere has length π/4 and the planes AOB andBOC are perpendicular,
compute the length of the shortest path from A to C along the surface
of the sphere.



New York City Interscholastic Math League

Senior A Division Contest Number 1 Solutions

S11A1. 20. There are ten upwards-pointing triangles of side-length 1, six of side-length
2, three of side-length 3 and one of side-length 4 for a total of 20 triangles.

Challenge: what if the original triangle of side-length 4 were replaced by a triangle of
side-length n?

S11A2. (log2 r)3. One approach is to choose a convenient value of r to use. For example,
a large power of 2 will do the trick, say r = 232. Then r/ log2 r = 227, (log2 r)

3 = 323,
log2(r

3) = 32 · 3 and log2 log2 r = 5. We see that the median is 323 = (log2 r)
3.

To prove this is somewhat more involved. Since r > 4, we have log2 r > 2 and thus
log2(r

3) < (log2 r)
3 and r/ log2 r < r. One can show by induction that log2 x < x for all

positive integers x, and with more sophisticated arguments can extend this to all positive real
numbers. It follows that log2(log2 r) < log2 r and so log2(log2 r) < log2(r

3). Thus, to show
that (log2 r)

3 is the median, we must only show that (log2 r)
3 < r/ log2 r, or equivalently

that log2 r < r1/4. In fact, this inequality is valid for any r > 216, and can be proven via the
same methods that show log2 r < r for r > 0.

S11A3. 9/2. We have

∞∑
n=1

2n − 1

3n−1
=
∞∑
n=1

2 · (2/3)n−1 −
∞∑
n=1

(1/3)n−1

=
2

1− 2/3
− 1

1− 1/3

= 9/2.

S11A4. (3
√

3,3). Since both lines pass through the origin, neither reflection changes the
distance of any point from the origin. Thus, it is enough to keep track of the argument of our
point, i.e., the angle at which it lies above the x-axis as we perform the reflections. Applying
R1 to a point with argument θ yields a point with argument 30◦− θ, while applying R2 to a
point with argument θ yields a point with argument 40◦−θ. Thus, applying first R1, then R2

to a point with argument θ yields a point with argument 40◦− (30◦− θ) = θ+ 10◦, i.e., this
combination is a rotation by 10◦ counter-clockwise around the origin. We are asked to apply
this combined operation three times to the point (6, 0), which yields a point at distance 6
from the origin and argument 30◦. This point is (3

√
3, 3).

S11A5. 5. We have 360 = 23 · 32 · 5, so 360n = 23n · 32n · 5n has (3n + 1)(2n + 1)(n + 1)
factors. Now it suffices to check a few reasonable values of n; we see that
when n = 4 we have 13 · 9 · 5 = 585 factors and when n = 5 we have
16 · 11 · 6 = 1056 factors, so the desired value is 5.

S11A6. 8. The major axis of the ellipse is the segment that joins the two
points on the ellipse that are as far as possible from each other. In our case,
one of these is the point on the ellipse with the largest x-coordinate (and
also the largest z-coordinate) and the other is the point with the smallest
x-coordinate (and also the smallest z-coordinate). This segment is the



hypotenuse of a right triangle whose base is the diameter of the ellipse, so its length is√
22 + (4 · 2)2 = 2

√
17. The minor axis is the diameter of the ellipse perpendicular to the

major axis and has length 2.
Let F1 and F2 be the two foci, let P and P ′ be the endpoints of the major axis and

let Q be a point at one end of the minor axis. By the defining property of an ellipse we
have F1P + F2P = F1Q + F2Q. From the symmetry of the ellipse we have F2P = F1P

′

and so F1P + F2P = PP ′ = 2
√

17. By symmetry and the Pythagorean Theorem we
have F2Q = F1Q =

√
12 + (F1F2/2)2. Putting all this information together gives 2

√
17 =

2
√

12 + (F1F2/2)2, whence F1F2 = 8. (This paragraph is a derivation of a particular case of
the general fact that in an ellipse with major axis of length A, minor axis of length B and
distance C between the foci, we have C2 = A2 −B2.)

2

8

z

x

P P ′

Q

F1 F2

1

Challenge: how far can you generalize this? What about a plane z = kx for some constant
k? What if the radius of the cylinder changes? What about a plane z = ax + by + c for
constants a, b, c?



Senior A Division Contest Number 2 Solutions

S11A7. −1. Use the double-angle identity cos(2t) = 2 cos2 t−1 to write both occurrences
of cos 34◦ in terms of cos 17◦, and write sec2 17◦ = 1

cos2 17◦
. This simplifies our expression to

2−2 cos2 17◦

2 cos2 17◦
− 1

cos2 17◦
. Combining the fractions, all trig functions cancel and we are left with

the answer −1. (The question arose by beginning with the trig identity sec2 θ − tan2 θ = 1,
performing several manipulations, and choosing the irrelevant θ to be 17◦.)

S11A8. (3n2 + 5n + 2)/2 OR 3n2/2 + 5n/2 + 1 OR (3n + 2)(n + 1)/2, or equivalent.
There are exactly k lattice points in the triangle with x-coordinate 3k − 3, and with x-
coordinate 3k − 2, and with x-coordinate 3k − 1. Thus, the total number of lattice points
in the triangle is (n + 1) + 3

∑n
k=1 k = (n + 1) + 3 · n(n+1)

2
= 3n2+5n+2

2
. (The first summand

counts the right-most edge of the triangle.)
Alternatively, use Pick’s Theorem: the area of the polygon is 3n2

2
, and this should be

equal to I+ B
2
−1, where I is the number of interior points and B is the number of boundary

points. The horizontal leg of the triangle has 3n + 1 points, the vertical leg has n + 1 and
the hypotenuse has n + 1, so (accounting for double-counting of the vertices) B = 5n. It
follows that I = 3n2

2
− 5n

2
+ 1 and so the total number of points is I +B = 3n2

2
+ 5n

2
+ 1

S11A9. 4860. One option is to multiply the expression in question out by hand. Alter-
natively, observe that the coefficient of xky6−k has the form 6!

k!(6−k)!2
k36−k. The ratio between

the kth and (k+ 1)th coefficient is thus
6!

k!(6−k)!
2k36−k

6!
(k+1)!(5−k)!

2k+135−k = 3(k+1)
2(6−k) . This ratio is greater than

1 when 3k + 3 > 12 − 2k, i.e., when k ≥ 2, and is less than 1 when k < 2. Thus, starting
from k = 0, the coefficients increase until they reach the x2y4 term, at which point they
begin to decrease. It follows that the maximum coefficient is 6!

2!·4!
· 22 · 34 = 4860.

S11A10. 7 + 4
√

3. We have that 1 + r is the circumradius of an equilateral triangle of
side length 2, so 1 + r = 2

√
3

3
and thus r = 2

√
3

3
− 1. We also have R = 2 + r = 2

√
3

3
+ 1. Their

ratio is 7 + 4
√

3.
S11A11. 804. Since 2010 is divisible by 3, the number of positive integers less than or

equal to 2010 that are divisible by 3 is 2010
3

= 670. Similarly, the number of positive integers
less than or equal to 2010 divisible by 5 is 2010

5
= 402. An integer is divisible by 3 and 5 if

and only if it is divisible by 15, and there are 2010
15

= 134 integers less than or equal to 2010
that are divisible by 15. Thus, we have in total (670 − 134) + (402 − 134) = 804 positive
integers less than 2011 that are divisible by 3 or 5 but not both.

S11A12. 6. The answer is 6. To prove this, we can observe that t(4) = 65536 >
4096 · 12 + 4 > 4000 log2(4000) + log2(log2(4000)). Now t(5) = 265536 is much smaller than
400040004000

(since 2 < 4000 and 65536 < 40004000, but (exponentiating on both sides of the
inequality in the previous sentence) t(5) > 40004000 ·log2(4000) and so (exponentiating again)
t(6) > 400040004000

.
To actually come up with this answer in the first place, one can begin by taking logarithms

base 2 – taking two logarithms of t(n) > 400040004000
gives t(n − 2) > 4000 log2 4000 +

log2 log2 4000. Now notice that 4000 ≈ 4096 = 212, so the right-hand side is approximately
48, 000. The nearest powers of 2 are 32, 768 = 215 and 65, 536 = 216 = t(4).

Note that applying exponential functions or logarithms to both sides of an inequality
preserves that inequality because these functions are both monotonically increasing. In



general, the tower functon t(n) grows much faster than any exponential function.



Senior A Division Contest Number 3 Solutions

S11A13. 121
16
. We have

1 rod2 =
1

402
furlong2 = (

1

40 · 8
)2 mile2 =

= (
5280

40 · 8
)2 foot2 = (

5280

40 · 8 · 6
)2 fathom2 =

121

16
fathom2.

(Note: these are all real units in the Imperial system of measurement used in Great Britain
until the mid-1960s.)

S11A14.
√

26− 5. The centers of the two circles are at distance
√

52 + 12 =
√

26. This
is larger than the sum of the radii of the circles, so they do not intersect; thus, the closest
the two points can be is if they lie on the segment connecting the centers of the circles, in
which case they are

√
26− 5 units apart.

S11A15. 13. Let fn be the number of ways to cover a 2 × n rectangle with dominoes.
Then f1 = 1 and f2 = 2. Also, for any n > 2, the leftmost column of the rectangle can be
covered by one vertical domino (leaving a 2 × (n − 1) rectangle to be covered) or by two
horizontal dominoes (leaving a 2× (n− 2) rectangle to be covered). Thus fn = fn−1 + fn−2,
so we recognize fn as a Fibonacci number, and in particular can compute f3 = 3, f4 = 5,
f5 = 8 and f6 = 13.

Extension: What is f0? Why?
S11A16. 56. Consider the possible locations for the center of a diamond. If the side-

length of the diamond is d
√

2 then the center must be one of the lattice points in the
(8− 2d)× (8− 2d) central portion of the grid. Thus, the total number of diamonds meeting
our conditions is 62 + 42 + 22 = 56.

Challenge: what happens if we replace 8 by n in the statement of the problem?
S11A17. (7,24) and (15,20). Two such pairs are (15, 20) and (7, 24). One can check by

a variety of methods that these are the only examples.
S11A18.

(
100
24

)
π76 or equivalent. The coefficient of xn in (x+π)100 is 100!

n!(100−n)!
π100−n. Let

us compare this to the coefficient 100!
(n+1)!(99−n)!

π99−n of xn+1 by taking their ratio,

100!
n!(100−n)!

π100−n

100!
(n+1)!(99−n)!

π99−n
=

(n+ 1)π

100− n
.

Rearranging, we see that this ratio is less than 1 exactly when n > 100−π
π+1

and is greater

than 1 otherwise. Thus, the maximum coefficient occurs when n =
⌈

100−π
π+1

⌉
. Any reasonable

approximation to π (e.g., 3.14 or even just 3.1) allows us to compute that this yields n = 24,
so the maximal coefficient is

(
100
24

)
π76.



Senior A Division Contest Number 4 Solutions

S11A19. 81. Certainly the gcd of two integers divides their lcm. Also, for any divisor d
of 44100, we see that the pair (x, y) = (d, 44100) yields a gcd equal to d. Thus, we just need
to count divisors of 44100 = 22 · 32 · 52 · 72, of which there are (2 + 1)4 = 81.

S11A20. 15
19
. The three points are the vertices of a nondegenerate triangle unless they lie

on the same horizontal line. Thus, the probability in question is(
20
3

)
− 2 ·

(
10
3

)(
20
3

) =
15

19
.

S11A21. 17,137,257,103,223,343. (Order is not important, but all six values must be
present.) We must have either 3θ = 51 + 360n for some integer n or 3θ = −51 + 360n for
some integer n. Taking the values of n that yield a θ in the appropriate range, we find the
six possible values of θ are 17, 137, 257, 103, 223, and 343.

S11A22. 20
7
. The probability that the dart lies inside the circle of radius i is i2

72 . Thus,
by linearity of expectation, the desired probability is

7∑
i=1

i2

72
=

1

72
· 7 · 8 · 15

6
=

20

7
.

(To go from the first to the second term of this equality, we use the formula for the sum of
consecutive perfect squares.)

Alternatively, compute using the definition of expectation: the probability that the dart

lies inside exactly n circles is (8−n)2π−(7−n)2π
49π

= 15−2n
49

. Therefore, the expected number of
circles inside which the dart lands is 13

49
· 1 + 11

49
· 2 + . . .+ 3

49
· 6 + 1

49
· 7 = 20/7.

Challenge: what if there were n circles instead of 7?
S11A23. −8. From the first given, we have z = 1 + bi for some real number b. Thus

z2 = (1 − b2) + 2bi. From the second given, 1 − b2 = −2, so b = ±
√

3. It follows that
z3 = (1− 3b2) + (3b− b3)i = −8 has real part −8.

S11A24. 70n2+8n+1. The vertices of the triangle areA(0, 0), B(14n, 7n) and C(4n, 12n).
Since these are all lattice points, we may apply Pick’s Theorem. Edge AB contains 7n + 1
lattice points, edge AC contains 4n+ 1 and edge BC contains 5n+ 1; removing the double-
counted vertices, this is 16n boundary points. Using whatever your favorite method is, you
may compute that the area of the triangle is 70n2. Thus, if I is the number of interior points
and B is the number of boundary points, I + B/2 − 1 = 70n2 and so I = 70n2 − 8n + 1.
Thus, the total number of lattice points on or in the triangle is 70n2 + 8n+ 1.

Alternatively, one can split the triangle into two pieces and count the lattice points in
each piece via a variation on the solution to contest 2, problem 2.

This polynomial is called the Erhart polynomial associated to the triangle with vertices
(0, 0), (14, 7) and (4, 12). (Note that the given triangle is a dilation of this triangle by a
factor of n.) We can form the Erhart polynomial of any polygon P whose vertices have
integer coordinates: let EP(n) be the number of lattice points in the a dilation of P by a
factor of n. As a challenge, try to prove the following facts: the Erhart polynomial EP(n)
of polygon P is a quadratic, has constant coefficient 1, and has coefficient of n2 equal to the
area of P. What if we consider polyhedra instead of polygons?



Senior A Division Contest Number 5 Solutions

S11A25. 5. Complete the square to write 2x2
√

5−x4 = 5− (x2−
√

5)2. Since (x2−
√

5)2

is always nonnegative, the largest value this expression can take is 5, when x = ± 4
√

5.
S11A26. 21. We do a case analysis based on the number of 2s: if there are no 2s then

each row contains one 0 and two 1s, and the three 0s must lie in different columns; this can
occur in 6 ways. If there is one 2, it can lie in any of 9 positions; in this case, the entries
in its row and column must be 0 and the other entries must be 1, so the position of the 2
determines the entire table and we haeve 9 possibilities. It is not possible to have exactly
two 2s. With three 2s, we must have all other entries equal to 0, and the 2s must lie in
different rows and columns. This can happen in 6 ways. This gives a total of 6 + 9 + 6 = 21
tables meeting the desired conditions.

Note that this question (n × n tables with row and column sum equal to m) is difficult
in general, and even the case m = 2 for arbitrary n is nontrivial. Challenge: show that if
n is fixed and m varies, the number of fillings is a polynomial in m. Can you compute this
polynomial for n = 1, n = 2, n = 3 and n = 4?

S11A27. 15. Let the number of blue balls be b, so the total number of balls is 3b. Then the
probability of drawing blue twice is b(b−1)

3b(3b−1)
= 2

21
. Multiplying out, this implies 7b−7 = 6b−2

so b = 5 and there are 15 balls total.
S11A28. 24. Call the points (in their order along the line) A1, A2, A3, A4, B1, B2,

B3, B4. Suppose for sake of contradiction that one of our segments has as its endpoints
two A-vertices. Then there will be two A-vertices and four B-vertices left to be connected
by the other three segments. This means that one of the segments must connect two B-
vertices. But the segment connecting the two A-vertices and the segment connecting the two
B-vertices cannot overlap, a contradiction. Thus, each of the four segments must have one
A-endpoint and one B-endpoint. In this case, all four segments necessarily intersect (e.g.,
they all contain the point A4), so any such pairing works. The number of such pairings is 24:
there are four points that could be connected to A1, then three remaining points to connect
to A2, then two to connect to A3, then one remaining point for A4, so 4 ·3 ·2 ·1 = 24 pairings.

Challenge: what if there are 2n points connected by n segments?
S11A29. 2

√
2

3
. Without loss of generality, set AP = 1, so PB = 2,

BC = 3 and CQ = 1. Choose P ′ on AB so that CP ′ ⊥ AB. Then
PP ′ = QC = 1 and so BP ′ = 1. Applying the Pythagorean Theorem
in 4BCP ′, we have CP ′ = 2

√
2 and so sin ∠ABC = CP ′

BC
= 2

√
2

3
.

A P P ′ B

Q C

S11A30. π
3
. We choose a coordinate system as follows. Let O be the origin, let B

be the point (1, 0, 0) and let A lie in the xy-plane, with positive y-coordinate. Since the
distance between A and B on the sphere is π/4 and the radius of the sphere is 1, we
must have m∠AOB = π/4 and so A = (

√
2/2,
√

2/2, 0). Since planes AOB and BOC are
perpendicular, C lies in the xz-plane. As before, m∠COB = π/4 and so C has coordinates
(
√

2/2, 0,
√

2/2). (Actually, the z-coordinate of C could be either positive or negative, but in
case it is negative we may reflect the whole picture through the xy-plane without changing
anything important.)

It follows that AC =
√

02 + (−
√

2/2)2 + (
√

2/2)2 = 1 and so 4AOC is an equilateral



triangle. Thus m∠AOC = π/3. The distance from A to C along the sphere is the length of
the arc of the circle centered at O that passes through them; since this is a unit circle, the
measure of the arc is π/3.

Interesting note: this is a special case of the “Spherical Pythagorean Theorem.” In
general, if A, B and C lie on a sphere with center O such that planes OAB and OBC
are perpendicular, then cosm∠AOC = cosm∠AOB · cosm∠BOC. This can be further
generalized to give a “Spherical Law of Cosines.”


